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Abstract

We present progress toward an algorithm that provides short certificates of unsatisfiability
with high probability when inputs are random instances of 3-SAT. Such an algorithm would
incorporate an approximation algorithm A for the 3-Hitting Set problem. Using A it would
determine an approximation for the minimum fraction of variables that must be set to true -
(false) in order to satisfy the positive (negative) clauses. If the fraction is high enough, then the
instance is deemed unsatisfiable.
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1 Introduction

It is well known that the problem of determining the existence of a satisfying truth assignment
for a given propositional formula in Conjunctive Normal Form (CNF) is NP-complete. If clauses
have exactly three literals each, the problem is called 3-SAT and this problem is also NP-complete.
However, there exist polynomial time algorithms that, under certain circumstances, can produce a
solution to a random satisfiable instance of 3-SAT with high probability. This paper is concerned
with the question of the existence of a polynomial time algorithm that, with high probability,
verifies the unsatisfiability of a random unsatisfiable instance of 3-SAT.

Let Z be a random CNF Boolean expression where each of m clauses has exactly 3 literals taken
uniformly and independently from a set V' of n Boolean variables and complemented independently
with probability 1/2. Below, we refer to this model of generation of a random instance as M(m,n,3).
Suppose m/n is held constant as m and n tend to co. A series of papers [7, 3, 5, 10] ended with
the currently best result ([10]) that Z is unsatisfiable, with probability tending to 1, if m/n > 4.75.
Another series of papers [1, 2, 3, 8] ended with the currently best result ([8]) that Z is satisfiable,

*Computer Science Department, University of Cincinnati, Cincinnati, Ohio 45221 (franco@franco.csm.uc.edu).
Supported in part by the Office of Naval Research: N00014-94-1-0382
tComputer Science Department, University of Cincinnati, Cincinnati, Ohio 45221 (swamy@jupiter.csm.uc.edu).

1 DTIC QUALITY INSPELTED B

500 60902661




HITTING SET USED TO DETERMINE UNSATISFIABILITY 2

and a satisfying solution to Z may be found in polynomial time, with probability tending to 1,
if m/n < 3.003. Thus, random satisfiable instances of 3-SAT are usually easily solved for all but
a small range of values of the ratio m/n generating mostly satisfiable instances. On the other
hand, there is no known polynomial time algorithm that almost always verifies unsatisfiablity
when m/n is a constant greater than 4.75. Moreover, in [4] it is shown that resolution (therefore,
other well known methods for solving Satisfiability including the Davis-Putnam procedure) requires
exponential time, almost always, to verify unsatisfiability for all constant m/n > 4.75.

A positive result for verifying unsatisfiability, if one exists, is clearly much tougher to find than
the positive results for determining satisfiability cited above. A reasonable candidate algorithm
probably should avoid a search over many truth assignments to determine that none will satisfy
a given instance. This paper presents a reasonable strategy. The idea is to recast 3-SAT as a
3-Hitting Set problem and use an approximation algorithm for the 3-Hitting Set problem to prove
unsatisfiability. An instance of the 3-Hitting Set problem is a set § of atoms and a collection of
triples 7 = {T : T C S,|T| = 3}. The problem is to find the minimum $’ C § such that for every
T € T, there is an s € T which is also in §’. Any subset §” C S that satisfies the above condition
is called a hitting set, and S’ is an optimal hitting set. We present the mechanics of the method,
demonstrate its feasibility, and show how close we have come to its realization.

2 Unsatisfiability as a 3-Hitting Set problem

The idea is as follows. Given a random instance Z of 3-SAT, keep only the positive and negative
clauses (those that have all literals positive or all literals negative). Determine the minimum number
of variables that must be set to true to satisfy the positive clauses. Determine the minimum number
of variables that must be set to false to satisfy the negative clauses. If the sum of the two numbers
is greater than n, then at least one variable must be set to true and false if all the positive and
negative clauses are to be satisfied. Since this is impossible, 7 must be unsatisfiable if the sum is
greater than n.

The problem of determining the minimum number of variables that must be set to true or
false is equivalent to a 3-Hitting Set problem where the given set of atoms is the set of variables
and the sets composed from atoms are the clauses. Unfortunately, the 3-Hitting Set problem is
NP-complete. However, if there is an approximation algorithm for 3-Hitting Set with a certain
performance guarantee, then it is possible to decide unsatisfiability anyway. The sections below
discuss the liklihood that such an approximation algorithm exists and show, if one does exist, how
to use it assuming inputs are generated according to M(m,n,3).

3 Properties of random 3-SAT instances

This section develops the probabilistic analysis of random instances of 3-SAT generated according to
M(n,m,3) and shows how a polynomial time approximation algorithm for an optimization problem
known as 3-Hitting Set can be used to verify unsatisfiability with probability tending to 1.
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Lemma 1: With probability tending to 1, for any € > 0, an instance 7 of 3-SAT generated according
to M(n,m,3) has at least (m/8)(1 — €) negative clauses and at least (m/8)(1 — ¢) positive clauses.

Proof: Tt is sufficient to prove the hypothesis for positive clauses only since the result for negative
clauses is identical and, if the probability of two events tends to 1, then the probability of the
intersection of those two events also tends to 1. The probability that Z has at least r positive
clauses is given by

Pr(Z has > r positive clauses) = Z (TZ)(l/8)k(7/8)m_k.
k=r
This is a binomial distribution with mean m/8. Setting r = (m/8)(1 — ¢) and using the well-known
Chernoff bound on the lower tail of a binomial distribution we can bound the sum from below as

follows:
Pr(Z has > (m/8)(1 — ¢) positive clauses) > 1 — e (m/8)/2,

This tends to 1 with increasing m and the lemma is proved. O

Lemma 2: With probability tending to 1, the minimum fraction « of variables that must be set
to true (false) to satisfy all the positive (negative) clauses of Z is at least the value given by

_ 8 aln(a)4+(1-a)ln(l-a)
ﬂ—m/n_1_€ In(1-(1-a)?) '

Proof: Consider only the positive clauses as the case of negative clauses is identical. Let V'(a) =
{v1,2, ..., Vjan|} be a random subset of [an| variables taken from V. The probablility that setting
only variables in V'(a) to true satisfies r positive clauses is

(vl
(1'““_(3) ) '

The average number of sets V'(«) that satisfy the positive clauses is

(LannJ) (l' %)

This is an upper bound on the probability that there exists a set V'(«) that satisfies the positive
clauses. We need to find the maximum « for which this expression tends to 0. Simplifying by using
Stirling’s approximation for factorials, and substituting (m/8)(1 — €) for r since, from Lemma 1,
we have at least that many positive clauses, we need to find the maximum o such that

(1= (1—a)®)-0m/s) ( (1-(1- a)a)(l—f)(m/n)/S)" L

aan(l _ a)(l‘a)” aa(l _ a)(l—a)

This is satisfied if
8 aln(e)+(1-a)ln(l-a)

ﬂ:m/n>1_€ In(1-(1-a)’)
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The lemma follows. O
A result similar to Lemma 2 is proved in [6].

From Lemma 2, with probability tending to 1, if 8 > 41.52, then the number of variables that
must be set to true to satisfy the positive clauses and the number of variables that must be set to
false to satisfy the negative clauses both must be greater than n/2. Consequently, with probability
tending to 1 and 8 > 41.52, a random instance of 3-SAT is not satisfiable and that fact may be
verified in polynomial time if there is a fast algorithm for finding the minimum number of irue
(false) variables needed to satisfy the positive (negative) clauses.

The problem of finding the minimum number of true variables needed to satisfy the positive
clauses is equivalent to the problem of finding a minimum 3-Hitting Set for a collection of triples
that is in one-one correspondence with the clauses. Although this problem is NP-complete, if
there is a good enough polynomial time approximation algorithm for 3-Hitting Set, we can use it
to reliably verify unsatisfiability in polynomial time for large, but constant ratios 8. By reliably
verify unsatisfiability in polynomial time we mean the algorithm provides a polynomial time test of
unsatisfiability which, if successful, proves a given instance is unsatisfiable and is not successful with
probability tending to 0. The question of precisely how good such an approximation algorithm must
be to reliably verify unsatisfiability in polynomial time is answered after the following discussion.

Suppose there is a polynomial time approximation algorithm A, for a 3-Hitting Set instance H
with m triples taken from n atoms, that has the following approximation property: if the minimum
hitting set for H is less than n/2, then A returns a hitting set of no more than ny4(m, n) elements.
We can apply A to H and, if 8 is big enough to make an > ny4(m,n), then, with probability
tending to 1, the minimum hitting set for H is greater than ny4(m,n). Since A is an approximation
algorithm, it returns a hitting set for H of size greater than ny(m,n), with probability tending to
1. Due to the approximation property of A, a returned hitting set of size greater than nya(m,n)
is not possible if the minimum hitting set for H is of size less than or equal to n/2. Hence, with
probability tending to 1, for large enough 3, A can be used to determine whether a set of positive
clauses taken from a random instance of 3-SAT requires more than n/2 true variables to be satisfied.
It follows that A can be used to reliably verify unsatisfiability in polynomial time for large enough
B. It remains to determine what 4 needs to be in order to support the above observation for
constant 8 under model M(m,n,3).

Theorem 3: Let Z be an instance of 3-SAT generated from M(m,n,3) and let 3 be the limiting
ratio of m/n and suppose 8 > 41.52. Let A be a polynomial time approximation algorithm
for 3-Hitting Set with y4(m,n) performance guarantee. Suppose there exists a function c(B),
1/2 < ¢(B) < 1, and ¢(B) decreases with increasing f3, such that, for very small € > 0,

c¢(8)In(B(1 - €)/8)
’m(m,n)<1—\/ Ao

Then, with probability tending to 1, A verifies that 7 is unsatisfiable.

Proof: We need to show that the right side of the equation of Lemma 2 is less than § after
substituting y4 for a. First, we do this with ¢(8) = 1 to provide an upper bound good for all 5.
We assume 74 > 1/2 since otherwise the theorem follows immediately. In what follows we ignore
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€, which is assumed to be a constant very close to 0, for simplicity.

In(5/8)
g > 8(1 —74)?
(8
(1= 74)
8ln(ln(ﬂ/8)) —2In(1
(1=74)?
> g4 ln(7A)/((11 : ::j;; Inl = 74) (since (1 - z)In(l — z) < zln(z) if z > 1/2)
g=1aln(r4) = (1~ 74) In(1
(1—74)°
yaln(y4) + (1 = 74)In(1 - 74)
In(1—(1—7v4)%)

(by hypothesis)

(by substitution)

—14) (by simplification)

—74) (multiply top and bottom by 1 —v.4)

8

\Y

(since In(1—z) < —z).

Since the last expression is the right side of the equation of Lemma 2 with y4 substituted for a,
we have 74 < a.

Next, we show that ¢(3) = 1/2 is sufficient when 3 is large.

5 8(1(/_12)_1‘%?@ (by hypothesis)
8(1/2)1?1((—1/2)(1?—%)7) (by substitution)
= W 2)1n((1/2)(in£ﬂv/j§3 —In(l = 74) (by simplification)
g4 ln(m)/((i:;ﬁ; (=74 (for B = oo, (1/2) laln(1/B/8) > 1> —aln(1.4)/(1 - 74))
_ g71aln(14) (—1 (_1 ;-A”;«;) In(1 - 74) (multiply top and bottom by 1 —7.4)
> g4 m(vﬁl)(f_(l(:ffll;()l —74) (since In(1~2) < —2).
o

4 An approximation algorithm for 3-Hitting Set

In this section we present an approximation algorithm A for 3-Hitting Set with y4(m,n) < 1 -
2v/3/(9+/B) where m is the number of triples and n is the number of atoms from which triples
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A(Z):
Input: Instance (G, A) of 3-Hitting Set: G is a collection of sets taken from the atom set A;
Output: A hitting set for (G, A);

1. Set S = 3|G|/|A|.

2. Set T = 0.

3. Repeat the following as long as §>1.
(a) Choose an atom a € A such that §(a) > 1.
(b) Set T =T U {a}.

(c) Set A = A - {a}.
(d) Set G=G—{B:B€Gandac B}
(e) Set § =3|G|/|A|

4. Repeat the following as long as G = §.

(a) Choose a set B € G.

(b) Choose an atom a € B.

(c) Set T =T U {a}.

(d) Set G =G —{B:B€Gandac B}

5. Output 7'.

Figure 1: Algorithm for finding 3-covers of 3-cover graphs

are taken. The algorithm, presented in Figure 1, is related to but weaker than the obvious greedy
method as it only selects atoms that occur an average number of times among remaining sets
instead of the maximum number of times. Although y4(m, n) is not enough to satisfy Theorem 3,
we note that it is fairly close to what is needed. It is possible that a similar algorithm with a more
accurate analysis will yield the required approximation result.

An unusual operation performed within A is computing the average number of sets containing
a particular atom. Let A denote a set of atoms and G denote a collection of 3-subsets of A, and
(G, A) denote an instance of 3-Hitting Set. Let S(a) denote the number of sets in G containing
atom a. The average number of sets containing a particular atom is S = Y aeaS(a)/|Al. At the
outset, § = 3m/n. Upon every iteration of the main loop of A the sets containing one of the more
frequently occurring atoms are eliminated. This lowers 5 somewhat. However, computing 5 does
not change from one iteration to the next: take the product of 3 and the ratio of number of sets to

number of atoms not yet considered.

Theorem 4: Algorithm A always returns a hitting set for (G, A) and runs in time bounded by a
polynomial in |G| and |A|.
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Proof: We show the following loop invariant holds prior to each step of either loop: T is a hitting
set for all sets eliminated from the original G up to the present. Clearly, this is true for the first
iteration of the first loop. On every succeeding iteration, every eliminated set has at least one of
its atoms placed in T'. Correctness follows.

The total number of iterations is at most |A|. Each iteration takes O(|G|) time. Hence, A runs
in polynomial time. O

Theorem 5: v4(m,n) < 1 —2v/3/(9v/B).

Proof: At iteration k of Step 3, the number of atoms remaining is n — k£ and the number of sets
remaining is no greater than m [T5=1 (1 — 3/(n — 1)). Hence, at iteration k of Step 3,

B 3 k-1 3
S<n—km.1;[<1—n—i)'

We find the value of k£ that makes the right side of the inequality 1. This is an upper bound on the
number of iterations taken by Step 3. It is sufficient to find k£ such that

In(3) + In(m) — In(n — k) + i\:‘:ln (1 3 ) = 0.

1=0 n—t

Using In(1 — z) = —2 — ©(2?) if |z| < 1, the above can be written

k-1

3 1
In(3) + In(m) — In(n — k) — ; (n —+ C (-(n——z)2>) = 0.
Using Y420 (1/(n - i) = In(n) + 7+ ©(1/n) and $E1(1/(n - i)?) = ©(1/(n — k)), we have
In(3) + In(m) — In(n — k) — 3In(n) + 3In(n - k) + ©(1/(n—k)) = 0
In(3) + In(m/n) - 2(In(n) —In(n — k)) + O(1/(n—k)) = 0
In(3) + In(f) — In((n/(n - k))*) + O(1/(n - k)) = 0O

In((n/(n — k))?/3) + In(ePH/(»=FDy = 1n(p)
(n/(n—E))?/3 = Pe=®/(n=k)
k n—mn/y/36 (for large n).

The size of G just before beginning Step 4 is, following steps similar to those above, no greater than

mlﬁ(l—nii)z( o

=0 316)3/2 ’

where k = n (1 - -—1\/3—75) Therefore, the total number of atoms used in the hitting set is no greater
than

R S L
k+m/(3ﬂ)32 = n \/334'(3,3)3/2
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n — ——

RV R
23 1
= n(l—g—\/—ﬁ)zn(l———%;).

Hence, y4(m,n) <1 - \/_%7.=ﬁ a

5 Is a better approximation algorithm possible?

Given the negative results on approximation algorithms for Hitting Set and other hard optimization
problems found in [9], the question arises whether an approximation algorithm for Hitting Set
satisfying the requirements of Theorem 3 is possible. In [9] it is shown that an approximation
algorithm for Hitting Set with approximation ratio less than clog(n), for some ¢ close to 1, is
unlikely. However, 3-Hitting Set is MAX SNP-hard which means it can be approximated with
constant factor in polynomial time. Moreover, it is felt that the guaranteed constant factor should
be close to 1 ([11]). Hence, the existence of such an approximation algorithm is likely.
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